$$
\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{35} \cdot \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}
$$

Guest R in region B

Cll1R . . C 61	3.87 (3)	$\mathrm{C} 411 \mathrm{R} \cdot \mathrm{C} 66^{1}$	3.80 (3)
C411R.. O65B	3.74 (4)		
Guest S in region B			
Ollls. . O65B	3.55 (4)	O1115...C66	3.48 (3)
Cl11S.-O65B	3.40 (4)	Cllis. . C_{65}	3.84 (4)
C321S...C53	3.80 (3)	Cllis. . $065 B^{1}$	3.65 (4)
C421S. . C63	3.83 (3)	Clils. . C66'	3.58 (3)
C421S...C53	3.83 (4)	C411s...C67	3.49 (3)
C421s...C62	3.82 (3)		
Guest-guest contact			
C221S. . O112R ${ }^{\prime \prime}$	3.62 (4)		

In the atom-numbering scheme for the guest molecule, a final digit of 1 indicates primary level region B and 2 secondary level A; the last character (R or S) indicates the enantiomer.

The positional parameters (except the primary hydroxyl groups) from an isomorphous complex (β-CD benzophenone; Le Bas, 1985) were used as a starting point. Successive fullmatrix least-square refinements and difference Fourier syntheses were performed. The difference Fourier maps showed clearly two regions of electron density but the guest molecule could not be located precisely at this stage. The refined coordinates of the S enantiomer from the study of overmethylated CD with the same guest (Rysanek, Le Bas \& Tsoucaris, 1992) were used. These coordinates were graphically plotted onto the difference Fourier map using FRODO (Jones, Bush, Pflugrath \& Saper, 1978) and then refined. The next difference Fourier maps still showed some electron density in this region which could be interpreted as the R enantiomer. This enantiomer was built up from the S-enantiomer coordinates and plotted onto the difference Fourier map. The refinements were performed using SHELX76 (Sheldrick, 1976). For β-CD, all non-H atoms were refined anisotropically except the disordered O6 atoms. H atoms were introduced at calculated non-refined positions; H -atom positions were not introduced for the guest molecule, water molecules or hydroxyl groups of the host molecules. The coordinates of the R - and S-enantiomers of the guest molecule were refined isotropically in a block rigid group with an occupancy factor of 0.25 for each guest enantiomer in the two regions. The O atoms of water molecules were refined with common isotropic displacement parameters. The numerous atoms in disordered positions explain the relative high value of the R index; this is usual for cyclodextrin structures.

Data collection: SDP-Plus (B. A. Frenz \& Associates, Inc., 1983). Cell refinement: $S D P$-Plus. Data reduction: $S D P$-Plus. Program(s) used to refine structure: SHELX76 (Sheldrick. 1976). Molecular graphics: FRODO (Jones et al., 1978), SYBYL (Tripos Associates Inc., 1988), ORTEPII (Johnson, 1976).

We thank Dr de Rango for helpful discussions. This work was partially supported by European Value Contract CTT 472.

[^0]
References

B. A. Frenz \& Associates Inc. (1983). SDP-Plus Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Baker, R., Herbert, R., Howses, P. E., Jones, O. T., Francke, W. \& Reith, W. (1980). J. Chem. Soc. Chem. Commun. pp. 52-53.
Hamilton, J. A. \& Sabesan, M. N (1982). Carbohydr. Res. 102, 31-46.
Hamilton, J. A., Sabesan, M. N. \& Steinrauf, L. K. (1981). Carbohydr. Res. 89, 33-53.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory Tennessee, USA.
Jones, T. A., Bush, B. L., Pflugrath, J. W. \& Saper, M. A. (1978). J. Appl. Cryst. 11, 268-272.
Le Bas, G. (1985). Doctoral thesis, P. et M. Curie University, Paris, France.
Le Bas, G. \& Rysanek, N. (1987). Cyclodextrins and Their Industial Uses, ch. III, edited by D. Duchene, p. 105. Paris: Editions de Santé.
Le Bas, G. \& Tsoucaris, G. (1994). Supramolecular Chem. 4, 13-14.
Mazomenos, B. E. \& Haniotakis, G. E. (1981). J. Chem. Ecol. 7, 437-443.
Mazomenos, B. E. \& Haniotakis, G. E. (1985). J. Chem. Ecol. 11, 397-405.
Mazomenos, B., Kondilis, P.. Moustakali, I., Hadjoudis. E. \& Tsoucaris, G. (1989). Proc. Int. Symp. Control Rel. Bioact. Mater. pp. 239-240. Chicago.
Rysanek. N.. Le Bas, G.. Villain. F. \& Tsoucaris. G. (1992). Acta Cryst. C48. 1466-1471.
Sheldrick. G. M. (1976). SHELX76. Program for Cṛ̣stal Structure Determination. University of Cambridge. England.
Szejtli, J (1989). In Cyclodextrin Technology: Dordrecht: Kluwer Academic Publishers.
Tripos Associates, Inc. (1988). SYBYL. Version 5.10. Tripos Associates, Inc., Missouri. USA.

Acta Cryst. (1996). C52, 2936-2939

cis-4,5-Dihydroxy-2,3,4,5-tetraphenylcyclo-pent-2-enone

Marek J. Jedrzejas, \dagger Marc D. Rubin, Ronald J. Baker, John Masnovi and Robert L. R. Towns
Department of Chemistry; Cleveland State University, Cleveland, OH 44115, USA. E-mail: r.j.baker@popmail. csuohio.edu

(Received 4 September 1995; accepted 28 Mav 1996)

Abstract

The title compound, $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{3}$, was prepared by the oxidation of tetraphenylcyclopentadienone with tetranitromethane. The cyclopentenone ring has a C 5 envelope conformation, with an elongated $\mathrm{C}_{s p^{3}}-\mathrm{C}_{s p^{3}}$ bond length of 1.569 (2) \AA. One hydroxyl group takes part in a bifurcated hydrogen bond involving an intra- and intermolecular bond to adjacent hydroxyl

^[\dagger Present address: Center for Macromolecular Crystallography. University of Alabama. THT-79. Birmingham. AL 35294-0005, USA.]

groups [O . O O 2.6299 (16) and 2.9279 (15) Å], while the second hydroxyl group forms an intermolecular hydrogen bond to an adjacent carbonyl O atom [$\mathrm{O} \cdots \mathrm{O}$ 2.844 (18) \AA].

Comment

The present study was undertaken as part of a systematic investigation into the reactions of tetranitromethane with functionalized arenes and alkenes (Masnovi \& Kochi, 1986; Masnovi, Sankararaman \& Kochi, 1989). The products obtained depend upon the ability of the latter compounds to serve as electron donors. The reaction of tetraphenylcyclopentadienone, (1), and $\mathrm{C}\left(\mathrm{NO}_{2}\right)_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found to afford the title compound, (2).

Extensive studies have been performed on the static and dynamic stereochemistry of organic molecules containing rotating aryl rings. For example, none of the phenyl rings of compound (1) lie in the plane of the central five-membered ring. Instead, compound (1) assumes a four-bladed propeller-like structure with the blades alternately above and below the central ring. The dihedral angles of the four phenyl substituents with the central five-membered ring of (1) are 35.3 (2), 47.3 (4), 61.1 (3) and $28.0(2)^{\circ}$ (Barnes, Horspool \& Mackie, 1991).

The molecular conformation and atom-labeling scheme for (2) are shown in Fig. 1. Although the central five-membered ring of (2) is not planar, atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 are essentially coplanar (plane 1), with the C5 atom out of this plane by 0.377 (3) A. $\mathrm{C} 3 A$, the ipso position of the phenyl ring attached at the C3 position, lies almost in plane 1, with an out-of-plane distance of $0.039(3) \AA$. This phenyl ring is also the most coplanar of the four phenyl rings with plane 1 [dihedral angle $36.50(7)^{\circ}$]. Such a conformation allows the cyclopentenone π system to overlap best with that of the phenyl ring attached to C 3 , preserving conjugation between them. $\mathrm{C} 2 A$, the ipso position of the phenyl ring attached at the C 2 position, lies further out of plane 1 [out-of-plane distance 0.198 (3) \AA] and the dihedral angle it makes with plane 1 is also larger [$48.80(8)^{\circ}$]. This phenyl ring is conjugated with the double bond but not with the carbonyl group of cyclopentenone. C4A and C5A, the ipso positions of the two phenyl rings attached to the saturated C 4 and C5 atoms, lie on the face of the central ring opposite
the hydroxyl groups and, as expected, show the least preference to align with the cyclopentenone π system [dihedral angles 84.58 (8) and 57.42 (8) ${ }^{\circ}$, respectively]. Bond distances and angles within the phenyl rings are mostly unexceptional (Barnes et al., 1991) and each individual ring is planar (out-of-plane displacements being less than $0.02 \AA$). It is noteworthy, however, that the internal angles about the substituted C atoms of the phenyl groups are consistently less than 120° [ranging from $118.20(16)$ to $118.69(16)^{\circ}$; Table 2]. Furthermore, the C4-C5 bond of the cyclopentenone ring is slightly elongated [1.569 (2) Å] relative to a typical CC single-bond length. This is most likely due to steric effects resulting from the high functionality of C 4 and C5.

Fig. 1. ORTEPII (Johnson, 1976) representation of (2) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level (aromatic H atoms omitted).

The molecules are linked to form centrosymmetric dimers by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (details are in Table 3). The O4-H4 hydroxyl group takes part in both an intramolecular (to the adjacent O 5 atom) and intermolecular (to the O5 atom of an adjacent molecule) $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The $\mathrm{O} 5-\mathrm{H} 5$ hydroxyl group only forms an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to the keto O 1 atom of an adjacent molecule.

The ${ }^{13} \mathrm{C}$ NMR spectrum of (2) in solution indicates rapid rotation of the phenyl substituents on the NMR timescale; only 21 resonances are observed (Jedrzejas, 1993), indicating eight pairs of symmetrically equivalent C atoms (the ortho and meta positions of each phenyl group). Coalescence is approached near 200 K . Studies on the dynamics of cyclopentanediol, cyclopentanone and (1) (Lambert, Johnson \& Xue, 1994; Willem, Pepermans, Hoogzand, Hallenga \& Gielen, 1981) suggest that a change in conformation about the C4-C5 bond may contribute to the temperature-dependent behavior of (2) in solution. The five-membered ring of crystalline (2) is non-planar, with the C 5 phenyl substituent exo. In solution, the cyclopentenone ring should be sufficiently
flexible to allow conformations such as placement of this phenyl group in an endo orientation or puckering at C 4 rather than C 5 , in correlation with rotations of the phenyl groups.

Experimental

The purple color of a solution of tetraphenylcyclopentadienone [$(1) ; 1.00 \mathrm{~g}$] and $\mathrm{C}\left(\mathrm{NO}_{2}\right)_{4}(1.35 \mathrm{~g})$ in $30 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ bleached over a period of $c a$. two weeks in the dark, during which time a dense almost colorless liquid phase separated. Colorless crystals of (2) ($1.07 \mathrm{~g}, 98 \%$) precipitated spontaneously.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{3}$
$M_{r}=418.49$
Orthorhombic
Pccn
$a=24.856$ (5) \AA
$b=22.041$ (5) \AA
$c=7.921(3) \AA$
$V=4340(2) \AA^{3}$
$Z=8$
$D_{x}=1.281 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.26 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in aqueous NaOH

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
3815 measured reflections
3815 independent reflections
3815 observed reflections

Refinement

Refinement on F^{2}
$R(F)=0.081$
$w R\left(F^{2}\right)=0.058$
$S=0.99$
3815 reflections
290 parameters
H atoms riding, with $\mathrm{C}-\mathrm{H}$ $0.94-1.02, \mathrm{O}-\mathrm{H} 0.88 \AA$ $w=1 /\left[\sigma^{2}(F)+0.001 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.0004$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=7.1-12.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Tetragonal prism $0.36 \times 0.35 \times 0.30 \mathrm{~mm}$ Colorless

$$
\begin{aligned}
& \theta_{\max }=24.92^{\circ} \\
& h=0 \rightarrow 29 \\
& k=0 \rightarrow 26 \\
& l=0 \rightarrow 9 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.26 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: Zachariasen (1963)
Extinction coefficient: 3.60 (14)

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
O1	0.06201 (5)	0.46570 (5)	0.00567 (15)	3.84 (6)
04	0.06147 (4)	0.57199 (5)	0.52881 (14)	3.51 (5)
O5	-0.00172 (4)	0.52413 (4)	0.29818 (13)	3.37 (5)
Cl	0.07086 (6)	0.48221 (7)	0.1495 (2)	3.00 (8)
C2	0.10093 (6)	0.44817 (7)	0.2792 (2)	2.90 (7)

C3	$0.10888(6)$	$0.48358(7)$	$0.4153(2)$	$2.89(7)$
C4	$0.08831(6)$	$0.54795(7)$	$0.3870(2)$	$2.83(7)$
C5	$0.04977(6)$	$0.54081(7)$	$0.2315(2)$	$2.83(7)$
C2A	$0.12133(7)$	$0.38627(7)$	$0.2452(2)$	$3.22(8)$
C2B	$0.17473(7)$	$0.37213(8)$	$0.2741(2)$	$4.01(9)$
C2C	$0.19501(8)$	$0.31565(9)$	$0.2340(3)$	$5.28(11)$
C2D	$0.16163(10)$	$0.27271(8)$	$0.1648(3)$	$5.84(12)$
C2E	$0.10871(9)$	$0.28558(8)$	$0.1368(3)$	$5.45(11)$
C2F	$0.08841(7)$	$0.34251(8)$	$0.1760(3)$	$4.39(10)$
C3A	$0.13600(6)$	$0.46655(7)$	$0.5741(2)$	$3.14(8)$
C3B	$0.16867(7)$	$0.50707(8)$	$0.6587(2)$	$4.37(9)$
C3C	$0.19611(7)$	$0.49028(10)$	$0.8032(2)$	$5.02(11)$
C3D	$0.18996(8)$	$0.43337(11)$	$0.8667(2)$	$5.17(11)$
C3E	$0.15579(9)$	$0.39302(9)$	$0.7894(3)$	$5.14(10)$
C3F	$0.12911(7)$	$0.40900(8)$	$0.6429(2)$	$4.08(9)$
C4A	$0.13470(6)$	$0.59099(7)$	$0.3439(2)$	$2.98(7)$
C4B	$0.17481(7)$	$0.57381(7)$	$0.2338(2)$	$4.03(9)$
C4C	$0.21464(7)$	$0.61409(9)$	$0.1865(3)$	$5.09(11)$
C4D	$0.21557(8)$	$0.67129(9)$	$0.2527(3)$	$6.13(13)$
C4E	$0.17642(10)$	$0.68930(8)$	$0.3636(3)$	$5.94(12)$
C4F	$0.13581(7)$	$0.64917(8)$	$0.4091(2)$	$4.24(9)$
C5A	$0.04609(7)$	$0.59702(7)$	$0.1241(2)$	$3.08(8)$
C5B	$0.01568(7)$	$0.64502(8)$	$0.1834(2)$	$4.12(9)$
C5C	$0.01665(9)$	$0.70048(8)$	$0.1020(3)$	$5.61(11)$
C5D	$0.04739(11)$	$0.70807(9)$	$-0.0398(3)$	$6.46(13)$
C5E	$0.07598(10)$	$0.66041(10)$	$-0.1034(3)$	$6.28(12)$
C5F	$0.07550(8)$	$0.60476(8)$	$-0.0215(2)$	$4.49(10)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{Cl}$	$1.216(2)$	$\mathrm{C} 2-\mathrm{C} 2 A$	$1.480(2)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.410(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.525(2)$
$\mathrm{O}-\mathrm{C} 5$	$1.4325(18)$	$\mathrm{C} 3-\mathrm{C} 3 A$	$1.476(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.475(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.569(2)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.538(2)$	$\mathrm{C} 4-\mathrm{C} 4 A$	$1.532(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.346(2)$	$\mathrm{C} 5-\mathrm{C} 5 A$	$1.506(2)$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	$126.29(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$103.10(12)$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 5$	$125.82(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 A$	$110.90(13)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 5$	$107.80(14)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 4 A$	$110.28(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$109.73(14)$	$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 1$	$104.17(12)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2 A$	$121.02(15)$	$\mathrm{O}-\mathrm{C} 5-\mathrm{C} 4$	$106.35(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 2 A$	$129.06(15)$	$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 5 A$	$111.42(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$111.89(14)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	$101.99(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3 A$	$127.06(14)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 5 A$	$118.26(14)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 3 A$	$120.99(14)$	$\mathrm{C} 2 B-\mathrm{C} 2 A-\mathrm{C} 2 F$	$118.57(15)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$113.06(13)$	$\mathrm{C} 3 B-\mathrm{C} 3 A-\mathrm{C} 3 F$	$118.20(16)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$	$111.98(12)$	$\mathrm{C} 4 B-\mathrm{C} 4 A-\mathrm{C} 4 F$	$118.48(15)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 4 A$	$107.54(12)$	$\mathrm{C} 5 B-\mathrm{C} 5 A-\mathrm{C} 5 F$	$118.69(16)$

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4—H4 \cdots O5	0.88	2.26	$2.6299(16)$	105
O4—H4 O5 $^{\prime}$	0.88	2.16	$2.9279(15)$	145
O5-H5 MO1	0.88	1.99	$2.8441(18)$	165

Symmetry codes: (i) $-x, 1-y, 1-z ;$ (ii) $-x, 1-y,-z$.
The space group was determined uniquely as Pccn from the systematic absences.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: SET4 and CELDIM (Enraf-Nonius, 1989). Data reduction: DATRD2 in NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: SOLVER in NRCVAX. Program(s) used to refine structure: $L S T S Q$ in NRCVAX. Molecular graphics: $O R T$ in $N R C$ VAX. Software used to prepare material for publication: TAB in NRCVAX.

The authors thank the CSU College of Graduate Studies for support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1122). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Barnes, J. C., Horspool, W. M. \& Mackie, F. I. (1991). Acta Cryst. C47, 164-168.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Jedrzejas, M. J. (1993). PhD dissertation, Cleveland State University, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lambert, J. B., Johnson, S. C. \& Xue, L. (1994). J. Am. Chem. Soc. 116, 6167-6174.
Masnovi, J. M. \& Kochi, J. K. (1986). Recl. Trav. Chim. Pays-Bas, 105, 286-295.
Masnovi, J. M., Sankararaman, S. \& Kochi, J. K. (1989). J. Am. Chem. Soc. 111, 2263-2276.
Willem, R., Pepermans, H., Hoogzand, C., Hallenga, K. \& Gielen, M. (1981). J. Am. Chem. Soc. 103, 2297-2306.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1996). C52, 2939-2941

A Potential Antiprotozoal Drug Containing Acridine and Thiadiazole Moieties

Janina Karolak-Wojciechowska, ${ }^{a}$ Agnieszka Mrozek, ${ }^{a}$ Pascale Amiel, ${ }^{b}$ Pierre Brouant ${ }^{b}$ and Jacques Barbe ${ }^{b}$
"Institute of General Chemistry, Technical University of Łódź, 90-924 Łódź, Poland, and ${ }^{\text {b }}$ GERCTOP/URA CNRS 1411, Faculté de Pharmacie, 27 blvd Jean Moulin, 13385 Marseille, CEDEX 05, France. E-mail: jkarolak@lodz1.p. lodz.pl
(Received 16 January 1996; accepted 30 May 1996)

Abstract

The title compound, 3-(6-chloro-2-methoxy-9-acridinyl)-5-[2-(diethylamino)ethylthio]-1,3,4-thiadiazol-2(3H)-one, $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{OS}_{3}$, belongs to a series of new potential antiprotozoal drugs containing the acridine and thiadiazole systems. These two quasi-planar moieties are bonded together and are almost perpendicular to one another because of steric hindrance.

Comment

In the course of our research on antiprotozoal (Bsiri et al., 1995) and antimicrobial drugs (Crèmieux et
al., 1994), we synthesized derivatives with two active pharmacophoric moieties in order to produce a heteroaromatic acridine nucleus with a basic [(diethylamino)ethylthio]thiadiazole substituent. The title product, (I), was obtained by the attack of 9-chloroacridine at an unexpected point on the thiadiazole and we have investigated its crystal structure in order to confirm ${ }^{13} \mathrm{C}$ NMR results (Amiel et al., 1995).

(I)

The title molecule can be described in terms of two parts corresponding to the two pharmacophoric moieties (Fig. 1). The heterocyclic nucleus of the 9 -substituted acridine is not completely planar and the three unsaturated aromatic rings look like a very flattened boat, with a dihedral angle of $2.5(3)^{\circ}$ between the external rings. This conformation is in agreement with data obtained from the Cambridge Structural Database (Allen \& Kennard, 1993) for 51 compounds containing the 9 -substituted acridine moiety. The thiadiazole substituent is directly attached to the acridine system via the $\mathrm{C}^{\prime}-\mathrm{N} 3 a$ bond. The five-membered heteroatomic ring is almost planar, the largest deviation from the mean plane being only 0.013 (2) A for the $\mathrm{C} 2 a$ atom. The thiadiazole ring is almost perpendicular to the acridine nucleus, forming a dihedral angle of $74.1(1)^{\circ}$ with it.

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids.

The geometry of the diethylaminoethyl substituent on the S3 atom is unreliable because of the high displacement parameters for these atoms, which may be genuinely dynamic or may mask some degree of static disorder. Low-temperature data collection was unfortunately not possible because the crystals cracked on cooling.

[^0]: Lists of structure factors, anisotropic displacement parameters. Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA 1216). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CHI 2HU, England.

